Mathématiques appliquées : Mathématiques - informatique - méthodes numériques

Public Concerné

Niveau BAC+2 scientifique

L'avis des auditeurs

Les dernières réponses à l'enquête d'appréciation pour cet enseignement :

Présence et réussite aux examens

Pour l'année universitaire 2022-2023 :

  • Nombre d'inscrits : 412
  • Taux de présence à l'évaluation : 46%
  • Taux de réussite parmi les présents : 63%

Objectifs pédagogiques

Donner aux élèves les rappels mathématiques essentiels à leur parcours et les connaissances de base en informatique et méthodes numériques utiles pour le génie des procédés et l'énergétique. L'accent sera mis sur les applications et la mise en oeuvre concrète des méthodes numériques pour résoudre les problèmes typiques de ces domaines. On amènera l'élève à réfléchir au choix de l'outil le mieux adapté pour résoudre un problème dans un contexte donné.
L'enseignement comportera beaucoup d'applications pratiques réalisées individuellement par les élèves sur : Excel ou Calc ; Python ou Matlab (ou équivalents).

Contenu de la formation

NB : venir en cours avec son ordinateur portable équipé d'un tableur (Excel ou Calc) et d'un langage de programmation interprété (Python par exemple ou bien Octave/Matlab).
Les exemples traités en TP seront issus de problèmes typiques de génie des procédés et d'énergétique.
Manipulation d'expressions algébriques [1 séance de 3 h]
  • des nombres aux polynômes
  • expressions de surfaces et volumes
  • fonction puissance
  • exponentielle et logarithme
  • valeur absolue
Dérivation et tangente à une courbe [1 séance de 3 h]
  • fonction linéaire
  • fonction affine
  • application d'un intervalle I dans un intervalle J
  • approximation locale par une fonction affine
  • dérivée d'une fonction en un point
  • fonction dérivée
  • propriétés de la dérivation
  • dérivée d'une fonction composée
  • dérivée d'une fonction réciproque
Intégration et calcul de surface [1 séance de 3 h] - TP avec tableur
  • exemples
  • construction de l'intégrale
  • théorème fondamental de l'analyse
  • intégration par parties
  • décomposition en éléments simples
  • méthode des rectangles pour le calcul approché
  • méthode des trapèzes
  • méthode de Simpson
Résolution numérique d'équations [1 séance de 3 h] - TP avec tableur
  • premier degré
  • second degré
  • troisième degré
  • méthodes de l'analyse mathématique : théorème des valeurs intermédiaires
  • algorithme de Newton
Algorithmique et programmation [1 séance de 3 h] - TP en Python
  • calculette
  • variables
  • boucle (pour le calcul d'intégrales)
  • conditionnelle (application sur l'algorithme de dichotomie)
  • programmation de la méthode de Newton
  • erreurs d'arrondis
Géométrie numérique [1 séance de 3 h] - TP en Python
  • graphe d'une courbe (exemple : parabole)
  • ajouter un point sur une courbe
  • tracer la tangente à une courbe
  • déplacer le point et la tangente le long de la courbe
  • dessiner deux courbes
  • représenter graphiquement l'algorithme de Newton
Bases de statistiques [1 séance de 3 h] - TP en Python
  • droite de régression
  • méthode des moindres carrés
  • covariance
  • fonction d'erreur
  • coefficient de corrélation
  • application : ordre de convergence des méthodes d'intégration numérique
Équations différentielles linéaires [2 à 3 séances de 3 h] - TP en Python
  • système dynamique
  • schéma d'Euler explicite
  • schéma d'Euler implicite
  • schéma de Crank-Nicolson
  • schéma de Heun
Système d'équations linéaires [0 à 1 séance de 3 h] - TP en Python (ou éventuellement tableur)
Partir d'un exemple simple puis faire le lien avec les matrices et enfin mettre en application dans un outil/langage adaptè.

Description des modalités de validation

Plusieurs devoirs à rendre tout au long du semestre + un devoir type QCM

En alternance ou en formation continue en journée :

Merci de consulter directement le secrétariat pédagogique de votre formation pour obtenir le planning.

En formation « à la carte Hors Temps de Travail », en présentiel, à distance ou hybride :

Voir les dates, les lieux d'enseignement et les modalités d'inscription sur les sites internet des centres régionaux qui proposent cette formation.

  • Grand Est
    • Grand Est
      • 2024-2025 1er semestre: Formation en présentiel soir ou samedi
  • Languedoc-Roussillon
    • Languedoc-Roussillon
      • Année 2024 / 2025: Formation en présentiel journée
  • Liban
    • Liban
      • 2024-2025 1er semestre: Formation en présentiel soir ou samedi
  • Paris
    • Paris
      • 2024-2025 1er semestre: Formation ouverte et à distance soir ou samedi
      • 2026-2027 1er semestre: Formation ouverte et à distance soir ou samedi
Code : UTC101
3
crédits